INSCOPER

User Guide Inscoper I.S. *Interface version : 8.7*

Table of contents

1. Contact & legal	5
1.1. Contact	5
1.2. Copyright	5
1.3. Disclaimer	6
1.4. FCC/IC certification	6
2. Specifications	7
2.1. Approach	7
2.2. Inscoper Device Controller	8
2.2.1. Warnings and cautions	8
2.2.2. Operating specifications	9
2.2.3. Input / Output	9
2.3. System requirements	
2.4. Installation	
3. Imaging solutions	
3.1. Inscoper I.S	
3.1.1. User journey	
3.1.2. Getting started	
3.1.3. Display settings	
3.1.4. Configuration	
3.1.4.1. Process images	
3.1.4.1.1. Camera settings	
3.1.4.1.2. Interaction with the live image	
3.1.4.1.2.1. Tools to interact with the image	
3.1.4.1.2.2. ROI creation	
3.1.4.1.2.3. ROI manipulation	
3.1.4.2. User/Expert display modes	
3.1.4.3. Control of motorized devices	
3.1.4.3.1. Interaction with motorized devices	
3.1.4.3.2. Create/Load a channel	
3.1.4.4. Calibration protocols	
3.1.4.4.1. Tiling calibration	
3.1.5. Acquisition	
3.1.5.1. Dimensions	27
3.1.5.1.1. Time	
3.1.5.1.2. Multichannels	
3.1.5.1.3. Positions	
3.1.5.1.4. Tiling	
3.1.5.1.4.1. Tiling creation	
3.1.5.1.4.2. Tiling edition	
3.1.5.1.4.3. Focus Map	
3.1.5.1.5. Multiwell plate mode	
3.1.5.1.5.1. Well plate editor	
3.1.5.1.5.2. Multiwell plate feature	
3.1.5.1.5.2.1. In Positions dimension	
3.1.5.1.5.2.2. In Tiling dimension	
3.1.5.1.5.2.3. Multiwell plate calibration	
3.1.5.1.5.2.4. Focus Map creation	

3.1.5.1.6. Automated Focus Map	
3.1.5.1.6.1. Automated Focus Map - Simple tiling	
3.1.5.1.6.1.1. Automated Focus Map - Multiple area tiling	
3.1.5.1.6.1.2. Automated Focus Map - Multiwell plate	
3.1.5.1.7. Z-stack	54
3.1.5.1.8. Autofocus	55
3.1.5.1.9. Multi-sequence acquisition	
3.1.5.1.10. Data Processor	
3.1.5.1.10.1. Interface description	58
3.1.5.1.10.2. Create a new data processing workflow	
3.1.5.1.10.3. Data visualization personnalization	63
3.1.5.1.11. Saving images and metadata	64
3.1.5.1.11.1. Interface presentation	64
3.1.5.1.11.2. Store name customization	
3.1.5.2. Data export	
3.1.5.2.1. Video exportation	66
3.1.5.2.2. Stack exportation	
3.1.5.2.3. Metadata access	
3.1.5.3. Semi-automated feedback microscopy feature	
3.1.6. Visualization	70
3.1.6.1. Visualization during acquisition	
3.1.6.2. Visualization after acquisition	71
3.1.6.2.1. Interface presentation	71
3.1.6.2.2. Interacting with filters	71
3.1.6.2.3. Image Processing	72
3.1.6.2.4. Interacting with graphics	73

1. CONTACT & LEGAL

Disclaimer, copyright, information about certifications, contact information.

Thank you for purchasing the INSCOPER product.

Please read this manual carefully before using the product. For future reference, please keep it in a safe place.

While every effort has been made to ensure the accuracy of this manual, some errors may remain. Please contact us if any points are unclear.

1.1. Contact

If you have any questions regarding the use of this product, please contact us by e-mail at: support@inscoper.com.

Please specify the following information about your system:

- Product serial number,
- Contact details,
- Any problem(s) you may have.

1.2. Copyright

The copyright in this document and the associated drawings are the property of INSCOPER and all rights are reserved. This document and the associated drawings are issued on condition that they are not copied, reprinted or reproduced, nor their contents disclosed except in cases and places where the system is used.

The publication of information in this document does not imply freedom from any patent or proprietary right of Inscoper or any third party.

INSCOPER and the INSCOPER logo are trademarks of INSCOPER Company (INSCOPER SAS - 12 square du Chêne Germain - 35510 Cesson-Sévigné - FRANCE). INSCOPER includes technology covered by the following patents:

- US Patent No. US10330911,
- EP Patent No. EP3123149,
- FR Patent No. FR3019324,

Changes will be made to the product on a periodic basis and these will be incorporated into new editions of user guides.

| 1 - Contact & legal | 1.3 - Disclaimer

1.3. Disclaimer

The information contained in this manual is provided on an "as is" basis, without any warranties, conditions or representations of any kind, whether express, implied, statutory or otherwise, including, but not limited to, any warranties of merchantability, non-infringement or fitness for a particular purpose.

In no event shall Inscoper be liable for any loss or for any direct, indirect, special, incidental, consequential or other damages, regardless of the cause, whether arising in contract tort or in connection with the use of the information provided herein.

1.4. FCC/IC certification

Any changes or modifications to this equipment not expressly approved by INSCOPER may cause, harmful interference and void the FCC authorization to operate this equipment.

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

This device must be professionally installed.

2. SPECIFICATIONS

Operating specifications and parameters, input/output connexions, system requirements

2.1. Approach

Inscoper I.S. is a turnkey hardware solution that completely revolutionizes the way in which fluorescence microscopes are controlled in live cell imaging.

Inscoper's fundamental new approach involves dissociating the two functionalities managed by the acquisition software:

- **1. User Interaction**: to configure the acquisition sequence, receive the acquired images, and display and save them;
- **2. Device Control**: to communicate with the different devices in the microscopy system and run the acquisition sequence defined by the user.

Microscope devices: stage, cameras, focus, shutters, light sources, filter wheels,...

This separation means that the Inscoper I.S. is free from hardware constraints. Therefore, regardless of the type of microscope, the Interface remains simple, easy to use and focused on user requirements rather than hardware issues.

2.2. Inscoper Device Controller

2.2.1. Warnings and cautions

- **1.** Always check that the Inscoper Device Controller is powered up before starting the computer. If in doubt, restart the computer.
- 2. The equipment can only be powered through Safety Extra Low Voltage that also complies with the limits of 6.3.1/6.3.2 of IEC 61010-1:2010.
- 3. Never use cables <u>longer than 3 meters</u> to connect devices (except for the Ethernet cable).
- 4. Please note that if the Inscoper Device Controller is used in a way that is not specified by INSCOPER, the protection provided by the device may be compromised.

2.2.2. Operating specifications

Parameter	Current Version	N	ext Versions	
Device Con- troller Model	М	S	L	XL
Weight	3.050 kg (6.724 lb.)	1.150 kg (2.20 lb.)	4.450 kg (8.82 lb.)	4.650 kg (8.88 lb.)
Dimensions (L*W*H)	230*230*230 mm (9.06*9.06*9.06 in.)	120*200*65 mm (4.72*7.87*2.55 in.)	420*434 (16.53*16.9	1*84 mm 93*3.15 in.)
Power input	24 VDC @ 2.5 A 24 VDC @ 3.75 A			
Operation tem- perature range	From 10 to 40 °C (from 50 to 104 °F)			
Altitude	Maximum 2000 m (6561,68 feet)			
Operating humidity range (non- condensing)	From 30 to 85 %			
Storage tem- perature range	From 0 to 50 °C (from 32 to 122 °F)			
Storage humid- ity range (non- condensing)	From 30 to 85 %			

NB: All there data are valuables for indoor use only.

2.2.3. Input / Output

	Current Version		Next Versions	
TYPE	М	S	L	XL
	2x (0-5V) 1x (0-12V)	1	8	16
OUTPUTS	DAC resolu- tion 12 bits No Programma- ble Output range	l Outp	DAC resolution 14 bits Sample rate 180 MS/s ut range ±10 V, 0-5 V,	s ; +-5 V
ILDA	Via External Con- troller (MaxILDA)	-	-	1
	2x (0-5V) 1x (0-12V)	-	-	16
ANALOG INPUTS ADC resolu- tion 12 bits No Programma- ble Input range		/ Input rar	ADC resolution 16 bits Sample rate 1 MS/s age ±2.5 V, ±5 V, ±10 V	s /, ±12.5 V
I/O	6	4	18	18
SERIAL PORTS	5	1	4	8
USB host	5	1	6	6
Computer		Windows	57/10/11	
Computer	1920 x 1080 px			

2.3. System requirements

	Minimum requirements	Optimum configuration
Operating system	Windows 7 / 10 32 bit / 64 bit MAC OSX 10.5	Windows 10 64 bit MAC OSX 10.5
RAM	4 Go	16 Go
Hard disk drive	4 Go	128 GB SSD drive for fast image saving
Processor	Pentium 2 266 MHz	Core i5 3.2 GHz
Graphics card		NVidia GeForce 8 and 100 series or higher ATI Radeon HD 2400, 3000, 4000, 5000 and 6000 series Intel GMA 4500 and GMA HD
Screen	Resolution 1920 x 1080	2 screens highly recommended

2.4. Installation

The Inscoper I.S. should only be installed by INSCOPER staff or appointed representatives. The customer and/or user can be involved in the installation process provided explicit consent has been given by an INSCOPER representative. In the event of intervention on the microscopy system with INSCOPER equipment or software without INSCOPER's consent, the company declines all responsibility for any consequences resulting from this intervention.

To **request installation** of Inscoper I.S. on a microscope, the following three steps are necessary:

- **1.** Send a list of all your devices connected to the microscope to contact@inscoper.com or via the dedicated form available at www.inscoper.com.
- 2. Give INSCOPER team three-day access to install the microscope.
- **3. Test out** the microscope with your team: acquire images of your research samples and compare them with previous ones.

3. IMAGING SOLUTIONS

From core solution to custom techniques

- Inscoper I.S.
- Inscoper scanFRAP
- Inscoper fastFLIM
- Inscoper liveRATIO
- MAICO I.S.

NB: The Inscoper I.S. section covers all the general information on calibrating devices, common interface elements, dimensions setup and visualization tools. Specific information for each product is presented in its respective guide.

3.1. Inscoper I.S.

Incorporating a specially-designed device, Inscoper I.S. provides a new user experience with improved technical performance, system integration and ease-of-use.

Inscoper I.S. is a user-friendly solution that gives microscope users a very efficient interface which interacts with their system:

- Configure acquisition sequences,
- Control the camera, receive, display and save the acquired images,
- Follow the state of the microscope in real-time,
- Save or load projects,
- Edit acquired images with some basic operations.

3.1.1. User journey

The Inscoper I.S. interface was designed as a user journey to help new users get accustomed to it and make it enjoyable for frequent use by advanced users.

The user journey has 3 successive stages:

- **1.** Configure the microscope's channels and general settings (Configuration Tab).
- 2. Define specific settings for the required image acquisition sequence. These settings are displayed as "dimensions" that can be combined and interlinked. Run the image acquisition sequence. Stop/Pause is possible.
- 3. View and/or manipulate acquisition results as raw images and graphics.

3.1.2. Getting started

When you launch the Inscoper I.S. software, the start window will appear. You will have access to the software version number and can choose from several options to begin your user journey:

New Project	To create a new acquisition sequence, click on New Project . A loading screen will appear while the interface recognizes the devices of the microscope. Wait until it disappears before starting your project.
AutoSave	The AutoSave button opens the most recently created project, even if it has not been saved. If the configuration settings have been saved, you can resume from where you left off.
Open Project	Click on Open Project to open an old/existing project. Select your file (.cbf) in the tree structure, then click on Open . Your project will be recalled with the settings that you saved.

¬IN SCOPER	File	🔅 Settings	(?) Support		r Mode ×
Configuration				Project Name 📃 9	toject 2022-09-05
Camera Settings C Exposure (ms) Advanced		Snap Live	Proje	Calibration Ting Go to Light Path Axis Microscope Fittes pf-800 furz Shutters Light Dath Objectur ject Name Project 2022-09-05 OC XY > Y-Axis 0 Step (um) 1 Focus 0 Z Step (um) 1	
				Channel Not saved V Add	
			2	Microscope ♥ TL Lamp 0 ♥ Cube SpX-Q ♥ ♥ Switch FLUO ♥	
				Filters 🗹 Lambda A 🗸 🗸 🖌 Lambda C 🗸	
		Ed	t Chart Crop Image	pE-800 fura 🛛 340nm 💽 🛛 🖓 380nm 💽	Go To Acquisition

You can customize the name of your various projects. If you don't, the default project name is the current date.

3.1.3. Display settings

To access the interface settings, click on **Settings** > **Display Settings**.

_					
Well Plate Editor	Well Plate Edi	itor			
Snap & Live					
Change Password	Name		~	Save	
Project Name	X Size	12	X Spacing (nm)	9000000	
Tiff Name	V Size		V Spacing (pm)	900000	
Metadata File Name	1 5120				
Preferences	Well Type	RECTANG 🗸			
	Well Width (nm)	5000			
	Well Height (nm)	5000			

This section allows you to make some settings, such as:

- 1. Edit your well plate.
- 2. Set options for the snap.
- 3. Set or change the password to switch from user mode to expert mode.
- 4. Set the default name of your project.
- 5. Change the default name of the images saved during the acquisition.
- 6. Select the units of measurement and choose the default data processor for your acquisition, activate some warnings (if your interval between 2 time points is not enough or if there is not enough space on the disk for the storage).

3.1.4. Configuration

You can use this tab to control the state of each motorized device of the microscope in order to find the working focus plan and select the optimum parameters of the camera being used.

The screen can be divided into 4 parts:

- A camera settings,
- B live image viewing,
- C calibration protocols,
- D access to all the motorized devices of the microscope and the creation of channels and the saving of them for all your acquisitions.

- E If you have two screens, you can split the interface in two by clicking on this button. This way you can display the camera view on one of the screens (the image will be much larger), while the parameters will remain on another screen.
- F If necessary, you can move the dividing bar between sections to enlarge one or other section (camera view or settings area).

You can modify the name of the project in the top-right corner of the screen. The default file name can be set later in the settings.

3.1.4.1. Process images

3.1.4.1.1. Camera settings

You can have up to 4 cameras on your system, and you can create presets for each of them.

Configuration	
Camera Settings C 8phase	es 🗸 1
Exposure (ms)	100 2
Binning	1x1 ~
Advanced 3	Snap Live

- **1.** If you want to use the camera preset, you can select it in the drop-down list.
- 2. Set the exposure time and binning.
- 3. You can also have access to all **advanced settings** of the camera and create a camera preset:

a. Click on Create Preset :

Create Preset Filter	Advanced Camera Settings	×
Show Read-only properties		
Property	Value	
	1x1 🗸	
Hamamatsu_Fusion-BIT PER CHANNEL	16	
Hamamalsu_Fusion-BUFFER FRAMEBYTES		
Hamamatsu_Fusion-BUFFER PIXEL TYPE		
Hamamatsu_Fusion-BUFFER ROWBYTES		
Hamamatsu_Fusion-BUFFER TOP OFFSET BYTES		
Hamamatsu_Fusion-BufferMode	LocalBuffer 🗸	
Hamamatsu_Fusion-Bus		

b. Select the parameters which will be saved in the camera preset by checking boxes. You can filter the parameters by writing in the search bar.

c. Then Confirm:

		- Camera Preset Creation	
Pre F - Filt	er crop		0
	D Property	Value	
V	Hamamatsu_Fusion-SoftwareCrop_Enabled 1		
	Hamamatsu_Fusion-SoftwareCrop_Enabled 2		
V	Hamamatsu_Fusion-SoftwareCrop_Height 1	0.5564	
	Hamamatsu_Fusion-SoftwareCrop_Height 2	0	
V	Hamamatsu_Fusion-SoftwareCrop_Width 1	0.7135	
	Hamamatsu_Fusion-SoftwareCrop_Width 2		
V	Hamamatsu_Fusion-SoftwareCrop_X 1	0.1081	
V] Hamamatsu_Fusion-SoftwareCrop_X 2		
		C	Cancel

1

- <complex-block><complex-block><complex-block>
- d. Choose the name and location for your camera preset:

NB: If you have two or more cameras, you can view all cameras simultaneously in Live.

Right-click on the live image to access the **Auto Exposure** mode. This mode is useful for automatically adjusting the exposure time of the camera to avoid pixel overload. First, this option automatically calculates the intensity of the pixels in the image in real time. The contrast is then adjusted to the value you that you have requested.

Auto Exposure	\otimes
Target Intensity (%)	50
	Confirm Cancel

3.1.4.1.2. Interaction with the live image

- **1. Snap**: to take a snap of the current image.
- 2. Live: start/stop the camera using the button.
- 3. Scale bar: double click on it to modify orientation and length.
- 4. Tools to interact with the image (see more here).
- 5. ROI tools: draw some shapes on the image to perform ROI or crop.
- 6. Numerical zoom: turn the mouse wheel over the image.
- **7. Merged images**: If you have more than one camera, you can merge the images from all the cameras in Live.
- 8. Edit Chart: possibility to see a real-time graph at the bottom of the image.
- 9. Camera crop: software or hardware crop.

3.1.4.1.2.1. Tools to interact with the image

W	You can move inside the live image by drag-and-drop.
(Ħ	You can select this option to add some ROI or make some crops on live images.
	You can choose this option to set the contrast automatically or manually. If it is manually, adjust the blue sliders on top of the camera view.
	Press this button to switch to full screen mode. To close this mode, press this but- ton again or click on the cross in the top-right corner.
	You can change the LookUp Table (LUT) in real time using this option. You have 3 options:
	- no LUT;
	- LUT with one color;
	- Preset LUT.

NB: Some LUT are presetted like:

- Pixel indicator showing in red the overloaded pixels
- Inscoper ratiometric dedicated to ratiometric images visualization
- Conventional multicolor LUT as "fire", "physics", etc...

3.1.4.1.2.2. ROI creation

To create a ROI on the image, you can choose between two modes:

	The pen mode allows you to add one or multiple ROI.
×	The scissors mode allows you to cut (remove) into a full shape while retaining the surrounding selected area.

Then, use the shape tools to draw desired shapes:

	Draw a straight line.
୰	Draw a freehand line.
	Draw the edge of a rectangle.
	Draw a filled rectangle.
Ο	Draw the edge of a circle.
	Draw a filled circle.
ß	Draw a free form edge.
8	Draw a filled free form.

3.1.4.1.2.3. ROI manipulation

When you make a right click on a ROI, you have access to a new window dedicated to the manipulation of all these areas. You can fill some areas, duplicate and/or edit ROI. By editing the ROI, you can manually give dimensions of this form and center it in the camera field of view. You can also remove one or all of them.

3.1.4.2. User/Expert display modes

Two accreditation levels are available in Inscoper I.S., according to the user expertise in the microscopy field.

Expert Mode	Expert Mode allows access to all settings and parameters of the system, without any restriction. This mode is basically dedicated to microscope facility managers or researchers familiar with microscopy. The "Expert" users have to prepare and save some protocol that will be reused by basic users.
User Mode	User Mode allows a restricted access to some settings and parameters. The restrictions are fully customizable, from basic channel configuration to most advanced settings of the camera(s) or any other devices. This mode is dedicated to biologists that are not familiar with microscopy. Here, they just have to load some protocol already prepared and apply them on their samples.

NB: Switching from User Mode to Expert Mode is possible at any time. A password can be set to access the Expert Mode. These accreditation levels are optional, according to the use of the system.

3.1.4.3. Control of motorized devices

3.1.4.3.1. Interaction with motorized devices

Light Path	Objective	~ A
Axis	X-Axis	0 • B
	< XY 🕨 Y-Axis	
	▼ Step (um	n) 1
	Focus	0 C
	Vertication Step (um	n) 1

You have access to all devices controlled by Inscoper I.S., including microscope, stages, shutter, light source, wheel filters, piezo, microfluidic element, ...

With this panel, objectives (A) can be automatically changed.

You also have access to a virtual joystick to move the XY stage (B) and the Z-focus (C) of the microscope.

3.1.4.3.2. Create/Load a channel

				8	}			<u>7a</u>	_				7b
6	Channel	470nm	_Cyan		470nm_Cyar	ı `	~	Add		Remove	Loa	d	Save
	Spectra X	1 2	Cyan Cyan Cyan Cyan	On/Off nsity]	Teal On/Off	Blue Dn/Off Blue ntensity				
			 ✓ Intensity ✓ Green On/Off ☐ Green Intensity 				J	Red On/ Red On/ Red Intensity	, Off (),				
	Nikon Ti2	5	✓ TL Shutter			^	3	✓ IL Shutte✓ CubeFilt	er 🚺	AD Lumencor	~		
		4	✔ LightPath	Cam Le	eft	~							

The expert users (if this option is activated) have access to all optical motorized elements of the microscope, like wheel filter, dichroic cube and light source. To manually create a fluorescent channel, you should follow the steps below:

- **1.** Select the right excitation source.
- 2. Set its intensity.
- 3. Adjust filter cube.
- 4. Select the LightPath.
- 5. If necessary, select brightfield light instead of or in addition to fluorescence.
- 6. Name your channel.
- 7. Save it:
 - a. temporarily by clicking on Add (User Mode)
 - **b.** permanently by clicking on **Save** (Expert Mode).
- 8. The created channel will be available in the list.

NB: Some systems have more than one camera port. It is necessary to select the right one before imaging.

3.1.4.4. Calibration protocols

3.1.4.4.1. Tiling calibration

I

The tiling tool is used to image large samples. The whole final image is divided into several images, called "tiles", acquired one by one and "stitched" afterwards to constitute the whole sample.

In order to use the tiling tool as efficiently as possible, it is necessary that the orientation of the camera is the same as the orientation of the stage. The calibration phase is used to make this adjustment.

Click on **Tiling** in the Calibration section (ff not yet calibrated, the button will be colored orange).

Calibration protocol can be performed according to two different approaches: Automatic or Manual.

Automatic

This mode is a fully-automated calibration protocol. You have nothing to do, except click on **Automatic** and validate the calibration at the end.

Manual

It is a semi-automated mode. Here, you have to test and validate the orientation of both camera and stage using the software.

1

- NB: First, be sure that the camera is switched on Live.
- 1. Use the virtual joystick to move the X and Y and observe whether the joystick and the camera have the same orientation.
- 2. Adjust the step if necessary.
- 3. If the orientation is not the same, you can add a rotation.
- 4. You can add a mirror effect on the image if necessary.
- 5. Click on Confirm.

Once the calibration finished, the Tiling button turns green.

3.1.5. Acquisition

This tab allows you to set the entire acquisition sequence, using all the system's dimension modules.

TINSCOPER Diffie 🗱 Settings	③ Support	User Mode - C X
Configuration Acquisition		Name Project 2022-09-06
Camera Settings C	Z1 Sequence 1	Config Add Show All
Exposure (ms) 100	⊘ 1. Time	● 0 🖋 🕂
Threshold Contrast Max: 6985	 Z. Tiling Switch to Positions 	● 0 🖍 🕂
195.79 pixels	✓ X ✓	● 0 💉 🕂
the little	2 ⊘ 4. Multi-Channels	● 0 🖋 🕂
	Data Processing and Charts Edit Parameters Edit Parameters	4
	Save Acquisition in RAM on Disk Save as B	Total images 0 Total size 08 Minimal duration 00:00m:00:00ms Start Acquisition
FPS : 9.97	It Chart Crop Image	

This tab can be used to prepare a **multi-dimensional acquisition**.

- **1**. Choose the dimension(s) from a large panel.
- 2. Select the right data processor for your acquisition.
- **3.** Set the path for the backup files.
- 4. Launch your acquisition.

The interface may be different (especially the dimension's list) depending on the type of equipment in your microscope system.

3.1.5.1. Dimensions

All available dimensions are displayed in the same way. The list of UI controls for the dimensions set up is as follows.

3.1.5.1.1. Time

The **Time** dimension is used to run time-lapse and image cells over a long period of time.

	1. Time							15
1	Number of Time Points	15						
2	Interval	0	h 0	min 5	s 0	ms	Rurst Mada	4
3	Total Time	0	h 1	min 15	s 0	ms		5
								Confirm

- **1.** Determine the required **number of time points** for the whole acquisition.
- 2. Set an Interval between each time point.
- **3.** The **Total Time** value is set automatically after the number of time points and the interval between them have been set.
- 4. Activate the **Burst Mode** checkbox if you want to take pictures as quickly as possible.
- 5. When you have finished editing the dimension, click **Confirm**.

3.1.5.1.2. Multichannels

This dimension is useful to select two (or more) channels and add them in the acquisition sequences.

Image: Ward of the system I	
1 Blue_395 ∨ 0 ↓ Hamamat ∨ 25 ⊗ 2 Cyan. 470 ∨ ✓ 0 ↓ Hamamat ∨ 25 ⊗	
2 Cyan_470 🗸 🔽 0 🔂 🗖 Hamamat 🗙 25 🕅	
5	
Солбд	

- 1. Click on Add Channel.
- **2**. Select it in the list of the pre-configured wanted channel and customize their settings according to the sample.
- 3. For each channel, you can apply some additional parameters:
 - a. Z-stack: apply z-stack dimension;
 - b. Z-Offset: apply a different offset if the focus varies;
 - c. Shutter Blink: optimize shutter control to limit sample exposure and prevent photobleaching;
 - d. Camera: select the one that you would like to use;
 - e. Exposure(ms): adjust exposure time;
 - f. Intensity: adjust the excitation light (depending of the light source of your system);
- 4. Click on Live channel to have a preview of your settings.
- 5. Once you have finished editing the dimension, click on Confirm.

NB: After customizing the exposure time of the light intensity, click again on **Live channel** to update the image.

NB: You can drag and drop channels to change their order.

3.1.5.1.3. Positions

This dimension is dedicated to image different XYZ positions from a sample. You can switch from this dimension to the **Tiling** dimension by the button **Switch to Tiling**.

		2.	Positions	Switch to Tiling				•	0		
1			XY-Axis_>	(1000	$\mathbf{\hat{\mathbf{v}}}$						
		XY	XY-Axis_Y	2000	$\widehat{}$		\	Well Plate	Set		
			Step (um) 1			3	2 Add po	sition	Remove	all
		^ 7	Focus	3000			1	Move Strateg	y Faste	st	~
			Step (um) 1							
	N°		Tag	XY-Axis_X	XY-Axis	_Y 📝 Focus	Move to	Сору	Get		
_						< 1 >					
										4 C o	nfirm

To use the **Positions** dimension:

- **1**. Move the stage and the focus to the desired position.
- 2. Click on Add position to add the XYZ coordinates in the position list.
- 3. Make other adjustments or manipulations if necessary:
 - a. Add position: add a new position/s in the position list;
 - b. Remove all: delete all position from the position list;
 - **c. Move Strategy**: When performing a multiposition acquisition with a significant distance between two positions, two options are available for the stage moving between these two positions:
 - Fastest: Move directly from position A to position B;
 - XY Split: Move between 2 positions with small steps. Indicate the step by filing the Step (μm);
 - d. Tag: Users can add names to the selected positions;
 - e. X-Axis/Y-Axis: change/adjust position if necessary;
 - **f. Focus**: Use the focus value used for the selection of the positions. If the checkbox is not selected, the current focus value of the microscope will be used.
 - g. Move to: move the stage to this position;

h. Get: update coordinate of the position by the actual XYZ position of the system;

4. When all positions are set up, click on **Confirm**.

3.1.5.1.4. Tiling

3.1.5.1.4.1. Tiling creation

The tiling tool is used to image large samples. You can switch from this dimension to the Positions dimension by the top button **Switch to Positions**.

	2.	Tiling Sw	vitch to Positions			•	0	\$
1		X-Axis	1654	>				
◄	XY	Y-Axis	786			Well Plate	: Se	t
		Step (um)	1			2 Add posit	tion	Remove all
	Z	Focus	1687	ĺ Ĵ				
		Step (um)	1	J				
N٥	3	Tag	Position Count	Edit				
1			0 4		$\overline{\mathbf{x}}$			
					< 1 >			
								5 Confirm

- **1**. Move the stage and the focus to the desired position.
- 2. Click on Add position to add a tiling in the tiling list.
- 3. You can name each tiling in the **Tag** column.
- 4. Click on to edit/customize the tiling (see the Tiling editition) or on the list.

to delete it from

5. When all tilings are set up, click on **Confirm**.

3.1.5.1.4.2. Tiling edition

	2. Tili	ng Switch to Positions		9 35
1-	× × v	XY-Axis_X 8209	Focus 1782 🔷	
Ia	Туре	RECTANGLE Diagonale XY-Axis_X XY-Axis_Y	ocus	
	Point 1	4882 3877 174 0077 0 2067 177	32 \checkmark Get Goto	
	Point 2			
1b	Туре	RECTANGLE V Center V	4	Focus Map Add Clear
	Center	XY-Axis_X XY-Axis_Y Image: Constraint of the second secon	s	
	Width Height	1000		
2 3	Overlap (%)			Show 🖌 Images 🖌 LUT
	 Read Mo Snake M 	de d	5	
				Confirm

- **1.** Choose the way to generate your tiling and set its specific parameters:
 - a. For the **Diagonale** setup:
 - Move the stage to the top left corner of the structure of interest and click on **Get** for the first position.
 - Move the stage to the bottom right corner of the structure of interest and click on Get for the second position.
 - **b.** For the **Center** setup:
 - Set the position of the center of your tiling.
 - Set the width and the height of your tiling.
- **2**. Select an appropriate overlap pourcentage (10% is usually enough for final stitching for example).
- 3. Select the acquisition order of tiles.
- 4. Adjust the Focus map if you need to use it.
- 5. Click on Confirm.

1

NB: **Snake mode** is recommended for the screening mode because of its speed. This mode is optimized when the acquisition needs to be done fastly.

NB: Users can remove the **Focus** checkbox if they don't want to consider the Z coordinate used for the tiling creation.

NB: The **GoTo** button can be used to move the stage to the previously saved position.

3.1.5.1.4.3. Focus Map

1

The **Focus Map** is a feature dedicated to adapt the focus during the acquisition when imaging samples that are not flat.

To use the Focus Map:

- **1.** Edit a tiling.
- 2. Click on a random tile to move the stage to this position.
- **3.** Adjust the focus.
- 4. Click on Add.

1

5. Repeat theses steps as long as needed.

NB: A LUT will help you to appreciate the focus variability of your samples.

NB: The button **Clear** can be used to remove all points on the Focus Map.

3.1.5.1.5. Multiwell plate mode

The Inscoper software has a strong feature for imaging multiwell plates and for some applications including High Content Imaging.

3.1.5.1.5.1. Well plate editor

The Multiwell plate mode of the Inscoper I.S. is compatible with all commercial or homemade supports (multi-well, multi-slide, etc.). An option **Well Plate Editor** allows you to simply add a large panel of supports.

This following window is accessible by clicking on **Settings** then **Display settings** at the top of the window.

r		splay Settings				-	×
I Well Plate Editor I Snap & Live	Well Plate I	Editor	96 wells	~	6 Save		
Change Password Project Name Tiff Name Preferences	Name 96 we X Size Y Size Well Type Diameter (um)	12 8 CIRCLE 5000	Y Spacing	2 (um) 9 (um) 9	0000		

To add a new well plate:

- 1. Enter the number of horizontal and vertical wells.
- 2. Enter the horizontal and vertical spacing between the wells.
- 3. Enter the well type (circle, square, rectangle, ...).
- 4. Add the dimensions of the wells.
- 5. Name the support.
- 6. Save this new well plate.

i NB: You can edit the saved well plate by directly selecting it in the drop-down menu, make corrections and save these new settings.

i NB: You can use this feature to add a multi-slide holder, considering the slide as rectangular wells.

3.1.5.1.5.2. Multiwell plate feature

This option is accessible from the Positions or Tiling dimension using the **Set** button.

	You can select the wells you wish to image by clicking on this button
*•	After calibration, you can automatically move the XY stage to a selected well when this button is activated
\bigcirc	Unselected well
\bigcirc	Selected well
0	Current position of the objective

3.1.5.1.5.2.1. In Positions dimension

2. Positions Switch to Tiling	4	• 0
Supported plate 24-well plate 🗸	Edit Calibrate FocusMap 5 3	
		2
	Origin 2113 -1515 6	Get Find Center
<pre>c0 000000</pre>	Pattern 10x10 grid V Edit	
		7
	Cano	cel Add Clear & Add
	Cand	7 Cel Add Clear & Add

- 1. Use the **Supported plate** dropdown list to select the support you need.
- 2. Detect the well plate using the Find Center.
- 3. Automatically move the stage to some wells.
- 4. Create a Focus Map for some wells.
- 5. Select the wells that you want to image.
- 6. By checking the box **Pattern**, you can generate random points in each selected well by entering the number of desired points and the minimal distance between them.
- 7. Validate the settings by clicking on Add.

i NB: In the virtual well plate map, you can select a whole line by clicking on the letter indicationg that line. Similar features are available for the selection of a whole line, or a whole plate

NB: You can select multiple wells at once by holding down the mouse and moving the mouse over different wells.

To edit pattern, click on **Edit**.

i

- **1**. Choose which pattern you want to create: Grid or Random.
 - a. If Grid, set:
 - the number of image you want to acquire horizontally and vertically;
 - the distance between 2 positions;
 - the offset X and Y (allows you to move your pattern in the well).
 - b. If Random, indicate the position number and the minimal distance between positions.
- 2. Save your pattern by click on Add.
- 3. Come back to the dimension by clicking on Switch to WellPlate.

	Wellplate pattern edition 2 Existing Patterns Type Grid Horizontal Number 10 Qericial Number 10 Qericial Number 10 Offset X (um) 10 Offset Y (um) 10	Weiplate pattern edition 2 Existing Patterns Add Type Eandom V Position number 5 Wrinnal Distance (um) 100 10
Series to WellPale Series to WellPale	Switch to WellPlate	Switch to WeilPlate

3.1.5.1.5.2.2. In Tiling dimension

2. Tiling Switch to Positions	4	• 0
Supported plate 24-well plate 🗸	Edit Calibrate FocusMap	2
		2
	Origin -2553 -19034 6	Get Find Center
c 0 0 0 0 0 0 0 0 0	Overlap (%) 10	✓ Custom Dimensions
₽○┃○○○○○○	Read Mode	Width (um) 1550
	Snake Mode	Height (um) 1550 🔷
	Continuous acquisition	7
		Cancel Add Clear & Add

- **1**. Use the **Supported plate** dropdown list to select the support you need.
- 2. Detect the well plate using the Find Center.
- 3. Automatically move the stage to some wells.
- 4. Create a Focus Map for some wells
- 5. Select the wells that you want to image.
- 6. By checking the box **Custom Dimentions**, you can choose the size of your tiling which will be applicated in each selected well, the overlap of your tiles and the screening mode.
- 7. Validate the settings by clicking on Add.

3.1.5.1.5.2.3. Multiwell plate calibration

2	. Tiling	Switch to Positions	o
▲ ◀ XY J	X-Axis Y-Axis	528	D7 : Select 3 points on the edge of the well
▼ ▲ z	Step (un Focus	n) 10	reDo Add 33%
•	Step (un	າ) [1	Cancel Confirm

This step is needed to get precise positions of the well, and then to optimize the XY stage movements. To use the well plate feature:

- 1. Click on Find Center to start the semi-automated protocol.
- 2. Select the well to be used for well plate calibration.
- 3. Move manually the stage to this position if it was not previously done.
- | 3 Imaging solutions | 3.1 Inscoper I.S.
 - **4.** Fit the edge of the well with the virtual cross by moving the xy stage on the live image and click on **Add**
 - 5. Repeat twice on different sides of the well.
 - 6. Click on **Confirm** to finish.

When these steps are finished, you can move to each well automatically.

3.1.5.1.5.2.4. Focus Map creation

1. Select the well to create the Focus Map.

- 2. Choose the position in the well where you want to make the focus and click on Add.
- 3. Repeat this process until you are ok with the focus of your well.
- 4. Click on **Go to**, to move to the position.
- 5. Click on Remove all to delete all the points of your focus map if necessary.
- 6. You can import or export a Focus Map.
- 7. Click on **Confirm** to validate your Focus Map.

- 8. Select the wells where you want to apply the focus map.
- 9. Click on **Confirm** to validate your settings.

	Select	: wells t	to apply	y the fo	ocus map		
	1 2		4 5				
\bigcirc		$) \cup ($	\mathcal{O}	\bigcirc			
	OC						
с 🔾	OC						
D ()	\circ						

3.1.5.1.6. Automated Focus Map

The Automated Focus Map is a software optional feature of the Inscoper I.S. that automatically generates a relief map of the biological sample when performing tiling imaging.

3.1.5.1.6.1. Automated Focus Map - Simple tiling

- 1. In the tiling dimension, click on Add position to create the tiling.
- 2. Click on **Edit** to customize the tiling and adjust the Focus Map.

	2. Tiling Sw	itch to Positions	• 0	¢
◄	X-Axis XY > Y-Axis Step (um) Focus Z Step (um)	1654 786 1 1687 1	Well Plate : S	Set Remove all
N°	Tag	Position Count Edit		
1		0 ² 💉 😣		

3. Click on Auto to configure the Focus Map.

- 4. Choose the **step** and **size** of the stack.
- 5. You can select an existing pattern from the drop-down list (after that go to the step 9) **OR** you can create a new pattern by clicking on **Edit**.

	Auto FocusMap		
4	Step (um)	1	
	Stack Size	5	
5	Pattern	2x2_Gap800 🗸	Edit
	Channel	Blue_395_DA 🗸	
	Filter unsure po	sition	
	Filter radius		
	BackgroundRoi	~	Auto
	Background		
	Background Delta		
	Valid pixels (%)		
		Start	Cancel

6. To create a new pattern, click Edit choose the pattern you want: Grid or Random:

- a. For Grid, indicate the number of image you want to acquire horizontally and vertically, and the Gap (distance between 2 images).
 The offset X and Y allows you to move your pattern in the well.
- **b.** If you choose a **Random**, indicate the position number and the minimal distance between positions.
- 7. Save your pattern by clicking on Add.
- 8. Come back to the dimension by clicking on Switch to Tiling.

				/	7	-	
	Existing Patterns	x2_Gap800	~ /	Add		Existing Patterns	✓ Add
6	Туре	Grid	~			Туре	Random 🗸
а	Horizontal Number	2		Ê	b	Position number	200
	Vertical Number	2		♠		Minimal Distance (um)	100
	Gap (um)	800		♠	, I		
	Offset X (um)	0		Â ▼			
	Offset Y (um)	0		Â ▼			
L							
8	Switch to Tiling						

- 9. Choose the channel to acquire the stack.
- **10**. You can apply some filters by checking the box **Filter unsure position**:
 - Filter Radius: filter to smooth the noise by replacing each pixel by the median of the neighbor (0= no smoothing, 1= median on 3x3 square around the pixel, 2= median on 5x5 square around the pixel, ...).
 - BackgroundRoi: automatic calculation of Background and BackgroundDelta values by drawing an ROI. Background will be the mean value of the ROI and BackgroundDelta will be the double of the standard deviation.
 - Background: background mean value.
 - Background Delta: amplitude of the noise.
 - $^{\circ}$ Valid pixels: percent of pixel that should be far of the background to validate the position

11. Click on **Start**.

	Auto FocusMap		
	Step (um)	1	^
	Stack Size	5	^
	Pattern	2x2_Gap800 🗸	Edit
9	Channel	Blue_395_DA 🗸	
10	Filter unsure po	sition	
	Filter radius		
	BackgroundRoi	~	Auto
	Background		
	Background Delta		
	Valid pixels (%)		
		11 Start	Cancel

System will perform all points to create the Focus Map and you will obtain a list of points. By clicking on **Goto** or on the image, you can check the focus.

12. Click on the **Confirm**, the **Focus Map** is ready to use. You can continue to configure your acquisition sequence.

3.1.5.1.6.1.1. Automated Focus Map - Multiple area tiling

In **Tiling dimension**, after the configuration of all your tiling, you can do a FocusMap for all the positions.

1. Click on Start.

⊘ 1. Time	● ○ 🖋 🕂
 2. Tiling Switch to Positions XY-Axis_X 11892 XY > XY-Axis_Y -7 Tocus 2122 Tocus 2122	● 3 I Plate Set IsMap Start Add tiling Remove all re Strategy Fastest ~
N° Tag Position Count Edit	
1 1 📝 😣	
2 1 📝 😣	
3 1 📝 😣	
< 1 >	

- | 3 Imaging solutions | 3.1 Inscoper I.S.
 - 2. Proceed to the Focus Map Automation:
 - a. Choose the step and size to the stack.
 - **b.** Choose the pattern.
 - c. Choose the channel to acquire the stack.
 - d. You can apply some filters by checking the box "Filter unsure position"
 - Filter radius: filter to smooth the noise by replacing each pixel by the median of the neighbor (0= no smoothing, 1= median on 3x3 square around the pixel, 2= median on 5x5 square around the pixel, ...)
 - BackgroundRoi: automatic calculation of Background and BackgroundDelta values by drawing ROI. Background will be the mean value of the ROI and BackgroundDelta will be the double of the standard deviation.
 - Background: background mean value
 - Background Delta: Amplitude of the noise
 - Valid pixels: percent of pixel that should be far of the background to validate the position

3. Select the positions where the Focus Map will be applied by checking the boxes on the left.

4. Click Start.

	0) 2.	Tiling	Switch to	Positions						•	27	¢
2-	Fo	cusMap	Parameters	s	2d	Filter	unsure po	sition					
Za	Ste	ep (um)	1		÷	Filter rad			- Î				
	Sta	ack Size	5			Backgrou			✓ Auto				
2b	Pa	ttern	2x3_Gap	250 💊	·]	Backgrou			A				
2c	Ch	annel	Cyan_47	0_GF 💊	·]	Backgrou			÷.				
						Valid pixe							
3		N°	Тағ	g	Positio	n Count							
		1											
I	☑	2											
I	☑	3											
-													
								< 1 >					
												4 Sta	Irt Cancel

5. When the focus map is ready, a blue circle will appear on the right side of each position and at the bottom right (near the "Confirm" button).You will return automatically to the Tiling dimension. Once the blue circle indicates 100%, the focus map is finished and you need to click on Confirm.

6. You can verify the focus map for each tiling by clicking on **Edit**. Then you can continue to configure your acquisition sequence.

N°	Tag	Position Count	Edit	
1		9		\bigotimes
2		9		\bigotimes
3		9		\otimes

3.1.5.1.6.1.2. Automated Focus Map - Multiwell plate

This option is accessible from the **Positions** or **Tiling** dimension using the **Set** button.

- | 3 Imaging solutions | 3.1 Inscoper I.S.
 - **1.** Click on **Focus Map** to configure it.

2. Tiling Switch to Positions	1 0
Supported plate TPP Tissue cul 🗸 Edit	Calibrate FocusMap
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Origin 39657 -18964 Get Find Center
в () () () ()	Overlap (%) 0 Custom Dimensions
	Read Mode Width (um) 33900
	Snake Mode Height (um) 33900
	Continuous acquisition
	Cancel Add Clear & Add

2. Select your well where you would like to create your Focus Map then click on Confirm.

3. Click on **Auto** to configure the Focus Map.

- 4. Choose the **step** and **size** of the stack.
- You can select an existing pattern from the drop-down list (after that go directly to the step 9)
 OR you can create a new pattern by clicking on Edit.

	Auto FocusMap		
4	Step (um)	1	$\mathbf{\hat{\mathbf{v}}}$
	Stack Size	5	
5	Pattern	2x2_Gap800 🗸	Edit
	Channel	Blue_395_DA 🗸	
	Filter unsure po	sition	
	Filter radius		
	BackgroundRoi	~	Auto
	Background		
	Background Delta		
	Valid pixels (%)		
		Start	Cancel

- 6. Select the pattern you want: Grid or Random:
 - a. For Grid, indicate the number of image you want to acquire horizontally and vertically, and the Gap (distance between 2 images).
 The offset X and Y allows you to move all your patterns in the well.
 - **b.** If you choose a **Random**, indicate the position number and the minimal distance between positions.
- 7. Save your pattern by clicking on Add.
- 8. Come back to the dimension by clicking on Switch to Tiling.

				/	7	-	
	Existing Patterns	x2_Gap800	~ /	Add		Existing Patterns	✓ Add
6	Туре	Grid	~			Туре	Random 🗸
а	Horizontal Number	2		Ê	b	Position number	200
	Vertical Number	2		♠		Minimal Distance (um)	100
	Gap (um)	800		♠	, I		
	Offset X (um)	0		Â ▼			
	Offset Y (um)	0		Â ▼			
L							
8	Switch to Tiling						

- 9. Choose the channel to acquire the stack.
- **10**. You can apply some filters by checking the box **Filter unsure position**:
 - Filter Radius: filter to smooth the noise by replacing each pixel by the median of the neighbor (0= no smoothing, 1= median on 3x3 square around the pixel, 2= median on 5x5 square around the pixel, ...).
 - BackgroundRoi: automatic calculation of Background and BackgroundDelta values by drawing an ROI. Background will be the mean value of the ROI and BackgroundDelta will be the double of the standard deviation.
 - Background: background mean value.
 - Background Delta: amplitude of the noise.
 - $^{\circ}$ Valid pixels: percent of pixel that should be far of the background to validate the position

11. Click on **Start**.

	Auto FocusMap							
	Step (um)	1	^					
	Stack Size	5	^					
	Pattern	2x2_Gap800 🗸	Edit					
9	Channel	Blue_395_DA 🗸						
10	Filter unsure position							
	Filter radius							
	BackgroundRoi	~	Auto					
	Background							
	Background Delta							
	Valid pixels (%)							
		11 Start	Cancel					

System will perform all points to create the Focus Map and you will obtain a list of points. By clicking on **Goto** or on the image, you can check the focus.

12. Click on the **Confirm**, the **Focus Map** is ready to use.

13. Select the wells where you want to apply the Focus Map then click on **Confirm**.

14. Select the wells that you want to acquire and click on **Add**.

2. Tiling Switch to Positions	• 0
Supported plate TPP Tissue cul 🗸 Edit	Calibrate FocusMap
	● ★●
	Origin 39657 -18964 Get Find Center
	Overlap (%) 0 Custom Dimensions
	Read Mode Width (um) 33900
	Snake Mode Height (um) 33900
	Continuous acquisition 14
	Cancel Add Clear & Add

15. Select if you want to use or not the current Z to adjust the FocusMap.

After this step, you can continue to configure your acquisition sequence.

3.1.5.1.7. Z-stack

The volumetric imaging with Inscoper I.S. can be performed using the Z-Stack dimension.

	3. Z-Stack					• 1
	▲ Focus 112Z▼ Step (um) 1	~				
1	O Min/Max Plane	O Center Plane				
2	Min (um) 0 Get	Center (um) 0	Get	itack Step (um) 0.001	Nyquist	
	Max (um) 0 Get	Volume (um) 0	S	itack Size 1		
						4 Confirm

- 1. Select the mode you want to use: Min/Max Plane (limits of your stack) or Center Plane (middle of your stack).
- 2. Select your reference plane clicking on Get.
- **3.** Adjust the step (Interval between each plane of volume) and the size (number of steps). For the step size you can help you with the Nyquist Step Calculator:

Indicate the emission wavelength, the numerical aperture of your objective and the refractive index of your objective immersion medium. Once all information is set up, click on **Confirm** to validate your settings. The step size will be automatically calculated.

Nyquist Step Calcı	ılator	\otimes
Wavelength (nm)	550	ĺ.↓
Numerical aperture	1.4	
Refractive Index	1.51	
		Confirm

4. Once you have finished editing the dimension, click on the **Confirm**.

3.1.5.1.8. Autofocus

The Inscoper I.S. software has an auto-focus mode to keep samples at the perfect focus throughout the acquisition sequence.

	5. Autol	ocus		2			•	1	
	Focus Number	0		Step (um)	0				
3	Interval	1		Autofocus Group	POSITION 🗸	Group Size	1]
4	Channel	400nm_UV	~	Camera	PCO_Panda_C 🗸	Exposure	100.001		
7	Autofocus Algo	Sharpness	~	5		6			
8	Test AutoFocus								
									9
									Confirm

- 1. Select the number of focus to perform to each position.
- 2. Select the step (µm) between each focus.
- 3. Specify the frequency of autofocus in the acquisition sequence:
 - a. Interval: number of images taken between each autofocus.
 - **b.** Autofocus group:
 - GLOBAL applying autofocus on all images
 - POSITION applying autofocus on a set of groupe size (XY) positions
 - TILING applying autofocus on all tiling groups
 - c. Group size: number of positions to which the found focus value is applied.
- 4. Select the channel to use.
- 5. Select the camera to use and its exposure time.
- **6.** Select the autofocus algorithms to be applied : maximal intesity or sharpness (the best focus plane will be the sharpest).
- 7. Test the autofocus protocol.
- 8. Click on Confirm.

NB: The Autofocus dimension must be executed after the active dimension during an acquisition sequence.

3.1.5.1.9. Multi-sequence acquisition

When an acquisition sequence is ready, it is possible to launch it or to add others to create a multisequence acquisition.

1 Sequence 1		-	2 Take Image		onfig	3 Add	4 Show All
🕑 1. Time					10	/	¢
2. Positions	Switch to Tiling			•	0	/	₽
⊘ 3. Z-Stack				•	0		
🔗 4. Multi-Chan	nels			•	0		⇔
		5					

Each sequence has several options for setting up:

- 1. You can assign a name to a sequence to make it easier to identify.
- 2. Disable the image acquisition for a specific sequence by deactivating the "Take Image" button.
- 3. Add a new sequence to the multi-sequence acquisition.
- 4. You can have a synthetic view of the different sequences already prepared.
- 5. You can seamlessly navigate between sequences. The selected sequence is highlighted in orange.

In the summary tab below you have the following options:

- **1.** Adjust the loop number to determine how many times the entire acquisition sequence will be repeated.
- **2.** Make intermittent sequences by checking the checkbox and specifying the dimension to consider.
- 3. Choose to take image (or not) during each sequence.
- **4.** Activate/deactivate a sequence by clicking on the coloured button (changing red to blue when activated and inversely).
- 5. Edit the acquisition sequence by clicking on Pen.
- 6. Duplicate the current sequence by clicking on Copy.

7. Delete the current sequence by clicking on **Delete**.

1	Number of loop	1	Add Sequence			Remove All
2	Intermittent Sequences			4	5	6 7
	Sequence 1	Take Image 🔵	Time10			Сору
	Sequence 2	Take Image 🦲	Z-Stack1			Сору 🗵
	Sequence 3	Take Image 🦲	Time0 Positions0 Z-Stack1 Multi-Channels0			Сору
		3				

3.1.5.1.10. Data Processor

3.1.5.1.10.1. Interface description

The Data Processor feature allows you to fully customize the visualization of your data during and after acquisition. For example, you can visualize raw images only, visualize graphs of fluorescence intensity, apply algorithms to post-process or analyze your data in real time.

Data Processing and Charts	RawData	~	Edit Parameters	Switch to DataProcessor

In **User Mode**, you have access to the pre-configured data processing. You can select it from the dropdown menu and start the acquisition. However, the **Expert mode** gives access to the button called **Switch to Data Processor**, dedicated to the setup of this data processing.

- 1. Space for creating data processing workflow.
- 2. Data visualization customizing tools.

1

- **3**. Tools for analyzing data after splitting by dimension.
- 4. Tools to customize the image visualization after pre-treatments:

NB: The list of available treatments depends on the system.

- a. Selected Processor: Select the image of the workflow that you wish to view during acquisition.
- **b.** Selectable Processor: Select all the images that you wish to see after acquisition in the visualization tab. In principle, all steps are selected.

3.1.5.1.10.2. Create a new data processing workflow

1

 The starting point of the workflow are the raw images. They are represented by a node named RawData. To apply a treatment to these images, you need to create a new node by right-clicking on RawData and selecting New Node.

2. A new node will appear on the screen. At the moment there is no treatment associated with this node. To add one, double click on it or right click and select **Edit Node**.

NB: For better ergonomics, users can right-click in the area and select **Sort Nodes**. This option will organize all nodes to make them easily visible. Nodes can also be moved by dragging and dropping.

3. In the current window, the **Type** drop-down menu allows you to select the treatment to be applied from the list of available algorithms (stitching, shading correction, maximum projection, background subtraction, etc.). The **Temp. Data** check-box can be unchecked if you don't want to

save this step to disk. This can be useful to reduce the duration and the total size of the data on the computer/server.

Data Processor Add Remove						
Name NO_PROCESSOR]					
Type NO_PROCESS ~						
🗌 Temp. Data						
Confirm)					

The list of all applicable processes is detailed in the following table.

NO_PROCESSOR	No effect.
SIMPLE_TILING	Position each image at its theoretical position on a global tiling.
STITCH_TILING	Stitch adjacent images of a tiling, taking into account the overlap (requires SIMPLE_TILING before).
STANDARD_DE- VIATION_ON_FLY	Calculates the standard deviation of the intensity pixel by pixel of an image stack.
SHADING_CORRECTION	Removes unwanted signals from the image (misalignment, dust in the optical system,) Given an image of the background, the fol- lowing calculation is made for each pixel: (current intensity of the pixel / initial intensity of the pixel on the background) x average in- tensity of the background.
FILTER	Noise reduction by removing anomalous pixels from an image (de- speckle). For each pixel, the intensity values of the surrounding pix- els (according to a radius value) are recovered. It is then possible to apply a median or average filter to each pixel from these values. The pixels with an intensity value lower than this calculated value are then ignored (value equal to 0) thanks to a median or average filter (the median filter is recommended).
TIME_MAX	Keep the maximum value for each pixel of a stack from the "Time" dimension.
FOCUS_MAX	Keep the maximum value for each pixel of a stack from the "Z-stack" dimension.
TIME_AVERAGE	Keep the average value for each pixel of a stack from the "Time" di- mension.
FOCUS_AVERAGE	Keep the average value for each pixel of a stack from the "Z-stack" dimension.
CHANNEL_MULTICOLOR	Merge images from different channels. The maximum intensity val- ues for each pixel are retrieved and a blend of LUTs is performed.
SUBTRACT_BACKGROUND	Removes background from an image to improve contrast.
CHANNEL_RATIO	Rationalize the intensity of a single pixel using several different channels. The "SUBSTRACT_BACKGROUND" is directly present in "CHANNEL_RATIO" to optimize the output.
MULTI_CHANNEL_MERGE	Merges channels. Mainly used for SPIM with two excitation beams. 62

i

NB: All these elements can be performed after the acquisition or in real-time. Data will be actualized and implemented in the final output during the acquisition.

3.1.5.1.10.3. Data visualization personnalization

You can customize the display of the data during the acquisition, such as the evolution of the fluorescence intensity for example.

1	HISTOGRAM					
	GLOBAL_MEAN_2					
	GLOBAL_STATISTIC_2					
	CONFOCAL_SPECTROGRAPHE	2	Name	GLOBAL_MEAN_2	1	
	SIMPLE_SPECTROGRAPHE		Туре	GLOBAL_MEA 🗸	_	
	PHASOR_PLOT	3	Processor	RAW_DATA 🗸		Drop nere
	DEVICE_VALUES	4	Advanced		5	
	 Split by Time Split by Positions Split by Z Split by Channels 					
				Drop here		Drop here
	Switch to Dimensions					

To customize the data visualization window:

- **1.** Select a type of data to be displayed on the screen during acquisition:
 - Histogram: element used to monitor the evolution of the intensity distribution.
 - Global mean: element used to monitor the evolution of the average intensity of an acquisition sequence on a frame-by-frame basis or organized by a dedicated dimension.
 - Global statistic: similar to "Global mean", but have some statistical elements added directly in the graphics, giving a similar result to boxplots.
 - Device values: element used to periodically retrieve information/values from devices, using "get" functions.
- 2. Drag and drop it on the central square. The data type is resumed here. You can modify it using the drop-down menu.
- 3. Select the data to consider for the visualization.
- 4. Graphs can be customized to add some elements like the title of the axes or curves name.
- 5. If you want to see more than one data during the acquisition. You have to repeat this procedure from the beginning by drag and drop a data type on another empty square.

To customize the graphics:

- **1.** Add a name to the graph.
- 2. Add a title to both X and Y axis.
- 3. Select to see or hide the legend of each curve.
- 4. Select "Always" to ensure that graphics will always be visible.

				-
1	Name			
	Туре	GLOBAL_MEA	~	
2	X Axis			
	Y Axis			
3	Show Le	egend		
	Processor	RAW_DATA	~	
4	H Priority	ALWAYS	~	
	V Priority	ALWAYS	~	

NB: This customization step is optional, dedicated to helping researchers interpret their results during acquisitions.

3.1.5.1.11. Saving images and metadata

3.1.5.1.11.1. Interface presentation

Save Acquisition	
1 in RAM O on Disk	3
2 Choose Directory	Format 🛛 All in One 🗸 🗸
4 Save as BigTiff	

To save the acquired images and metadata:

- **1.** Select the type of data storage you want:
 - in the RAM of the computer (not recommended: all data stored in the RAM of the computer are not saved and will be lost when the program is closed)
 - in the computer/hard disk, SSD or servers (recommended).
- 2. Select the path to save your data.
- 3. Select the format to save all images:
 - all in one file;
 - \circ one tiff per image.
- 4. It is also possible to create a .bigTiff file (recommended for long and heavy acquisitions)

3.1.5.1.11.2. Store name customization

This feature is dedicated to standardize the name of all saved files. This feature is accessible by clicking on **Settings**, on the top of the window, and then on **Display Settings**.

_							
Well Plate Editor Snap & Live Change Password Project Name	Tiff Name All in One						
1 Tiff Name Preferences	2 Text Dimension Index Dimension Name Text Date Channel Time Channel Position Z Position Axis Camera Extra						
	 Text Position Name Extra Dim. Min Digit Nb. 0 Preview : image_MyPos Save 						

To standardize the name of all saved files:

- 1. Select the Tiff Name tab.
- 2. Here are all the elements that can be automatically added to the standardized name of saved files. Add them by dragging and dropping them to the name construction tools below. Generally the name composition is the text + dimension name + dimension index. For example: if you have 3 positions, the name of your files will be image_pos1, image_pos2, image_pos3.
- 3. Name construction tool that shows schematically the name of the future saved file.
- 4. Name preview.
- 5. Enter a name and click on the **Add** to save this new default name.
- 6. When you like the name structure, click **Save**.

3.1.5.2. Data export

3.1.5.2.1. Video exportation

It is possible to export a video from the Inscoper I.S.. Select with filters all images to put together and click on **Video** of the "Export" list.

	Export vi	deo						\otimes
1	Path							
2	Frame rate	10					0%	
3	Dimension	472	х	350	O Preser	ve ratio		
	GenericSta	ickImageA	IIInOi	ne Stac	k first image			
4	Export							

To export a video:

- 1. Select the path.
- 2. Select the sequence to export.
- **3.** Select the format to use.
- 4. Validate by clicking on **Export**.

3.1.5.2.2. Stack exportation

It is possible to export a stack of images from the Inscoper I.S.. Use the filters to select all the images to be packed and click on **Stack** of the "Export" list.

	Export im	nages			\otimes
1	Choose File				
2	Sequences	Sequence 1	~	0%	
3	Format	All in One	~		
	Save as Big	gTiff			
	Use Filters				
	Crop		~		
					4 Export

To export a stack:

- 1. Select the path.
- 2. Select the sequence to export.
- 3. Select the format to use.
- 4. If necessary, you can check the **Save as BigTiff** box.
- 5. If necessary, you can check the Use Filters box to select the dimensions you are interested in.
- 6. Validate by clicking on **Export**.

3.1.5.2.3. Metadata access

On the right side of the window there is a white triangle. You can click on it to access all the metadata. In this tab, you can access all the metadata, including the camera, light source or microscope settings; a search bar and some filters are available to facilitate the search for some specific parameters. This list can also be exported, if necessary, by clicking on the **Export** button located in the lower right part of the screen. All metadata are bio-format compatible.

Metadata	Тад
Include Filter	✓ Edit
Filter	
Property	Value
Leica_DMi8_Microscope-X-A	0
axis	{"ExtraAxis":[],"Focus":{"Dev
BitDepth	16
Cooled_pE800-C Intensity	0
ImageType	SEQUENCE
Name	340nm / 380nm
ChannelIndex	o 🖉
Leica_DMi8_Microscope-IL_S	Itrue
Leica_DMi8_Microscope-Lam	FLUO
Leica_DMi8_Microscope-Focu	.0
Camera	PCO_Panda_0
Sutter_Lambda_10-3-Shutter	false
Cooled_pE800-F Intensity	0
Time-Time	0
Exposure-ms	100
SliceIndex	0
Cooled_pE800-G Shutter	true
Channel	380nm
Cooled_pE800-B Intensity	0
Cooled_pE800-C Shutter	false
	Export

3.1.5.3. Semi-automated feedback microscopy feature

The Inscoper I.S. can be used to perform some feedback microscopy experiments. For example, you can image a large sample using the tiling dimension. Then you can select a few areas of interest on this large image and automatically import them into a new sequence.

	Metadata 4 Tag						
	5	Roi	6	Tag	7		
		1		Neurons			
		2		Glial cells			
		3		Blood vessels			
	Add as tiling						
9	Overlap 10 Read Mode Snake Mode Add To Sequence (New Sequence) Add						

To use this feature:

- **1**. Realize a large image using the Tiling dimension.
- 2. Add some ROI to structures of interest.

- **3.** In the **Visualization** tab, click on the white triangle on the right of the window to open the **Metadata** tab.
- 4. Select the Tag tab.
- 5. Here all ROI are presented. You can add, edit or remove ROI according to your needs.
- 6. Add some tag name to each ROI if necessary.
- 7. Select ROI of interest. Positions of these ROI will be re-sent to the Acquisition tab later.
- 8. If tilings are needed, adjust here all the settings.
- 9. Select where all new positions will be stored (new sequence of pre-existing one).

i NB: This feature can be used to (1) fastly scan a sample with a low magnification objective and then (2) rescan it with a higher magnification.

NB: Similarly, it can be used to (1) prescan a sample with a brightfield light and then to (2) use fluorescence only in structures of interest to prevent phototoxicity

3.1.6. Visualization

i

3.1.6.1. Visualization during acquisition

You can monitor the acquisition sequence while it is running. The left part of the window shows the current images of the sequence. The middle part is reserved for graphics if needed (not here). And in the right part of the window, you can follow the progress of the acquisition, pause or stop the sequence.

1

NB: For large image acquisitions, it is possible to see the total tiling with the different images implemented during the acquisition.

3.1.6.2. Visualization after acquisition

3.1.6.2.1. Interface presentation

- **1**. As in the rest of the software, this part of the screen is reserved for viewing images.
- 2. Opens the location where images are stored. Only works if you save your data to disk.
- **3.** Filters to select images by dimensions.
- 4. Data processor access.
- 5. Button to switch to graphics visualization.
- 6. Options to export the current acquisition sequence by video or stack.
- 7. All acquired images.
- 8. Metadata access.

3.1.6.2.2. Interacting with filters

The Inscoper I.S. offers various tools to facilitate navigation between images, such as filters for example. In the **Filters** section, you can select a single image, a group or all images. The **Play** button next to the dimension name allows you to replay the selected sequence.

3.1.6.2.3. Image Processing

In this window you can process images acquired with processors of your choice.

Image to Process	RAW_DATA	~	\otimes
Process type	CHANNEL_M	~	<u> </u>
			Confirm

- 1. Select the images to be processed in the drop-down list.
- 2. Select the processor you wish to apply.
- 3. Then click on **Confirm** to finalize processing.

INB: The variety of processor types depends on your acquisition workflow.

Here is an example with tiling:

Image to Process	simple_tiling 🗸		
Process type	Stitching 🗸		
Correlation threshold (%)	70	^	
ZStack Reference			
Channel Reference	(No Reference) 🗸		
Invalid Tile	INTERPOLATE 🗸		
	HIDE		Cartinu
	DEFAULT_OFFSET		Confirm
	INTERPOLATE		

- **1**. Select the image to process.
- 2. Select the process type.
- 3. Indicate the correlation threshold (%).
- 4. Check if you want to apply ZStack reference and select the good plane to calculate the stitching.
- 5. Select the Channel Reference if needed.
- 6. Select the action to apply to the invalid tile:
 - **HIDE:** ignore this tile
 - DEFAULT_OFFSET: use the offset of this tile in the non stitched tiling
 - **INTERPOLATE:** create a linear model of all valid relative offsets, and use it to generate a valid offset for the tile
- 7. Click on Confirm.

3.1.6.2.4. Interacting with graphics

You can interact with charts by changing their appearance, editing them, adding time markers, or exporting them. Simply hover over a graph to open a new tab.

It is possible to:

- move inside a graph by holding down the mouse wheel click;
- zoom in and out using the mouse wheel;
- select an area with the mouse to zoom in;
- view a specific image by left-clicking directly on the graph;
- and (v) return to the initial view by right-clicking.

- 1. Enable XY zoom mode.
- 2. Enable X zoom mode.
- 3. Enable Y zoom mode.
- 4. Zoom to origin and enables auto-ranging
- 5. Modify the range of XY axes values for the graph visualization.
- 6. Export all data to a .csv file.
- 7. Show/hide curves legends
- 8. Tool to add some markers to the graph (see below).

If more than one graph is displayed, they are synchronized (movement, zoom in/out, ...) to facilitate the analysis of the curves.

| 3 - Imaging solutions | 3.1 - Inscoper I.S.

Add				Remove All
Name	Start	End	Color	
Start	00h00min00s000m	00h00min01s000m		
Agonist	00h04min50s000m	00h04min51s000m		
Inhibitor	00h06min30s000m	00h06min31s000m		
End	00h09min00s000m	00h09min01s000m		

In this window you can add information about your experiment as markers. These events, which are fully customizable, can be associated with the acquisition itself (start, pause, end), external events (addition of an inhibitor, medium supplementation), or others. These markers can be saved in a .csv file and reused at any time.